
  

 

Abstract— Group-based recreational activities have shown to 

have a number of health benefits for people of all ages. The 

handful of social robots designed to facilitate such activities are 

currently only able to implement a priori known recreational 

activities that have been pre-programmed by human experts. 

Once deployed in their intended facility, these robots are not 

able to learn new activities from non-expert humans. The 

objective of our research is to develop social robots capable of 

learning new activities from non-expert teachers in order to 

autonomously facilitate therapeutic recreational interventions. 

In this paper, we present the development of a novel learning 

from demonstration (LfD) system architecture for a social 

robot in order for it to learn from non-expert teachers the 

structure of an activity and monitor the execution of the new 

activity. In order to obtain user compliance, personalized 

persuasive strategies are also learned by the robot to use while 

implementing the activity during human-robot interactions 

(HRI) with the intended users. The architecture has been 

integrated into our socially assistive robot Tangy to learn the 

cognitively stimulating group-based activity Bingo. System 

performance experiments were conducted with Tangy to first 

learn to facilitate Bingo from non-expert teachers and then use 

the learned activity to physically facilitate Bingo games with 

multiple users. The results showed Tangy was able to 

effectively and efficiently learn the new Bingo activity structure 

as well as personalize its persuasive strategies to individual 

users in order to obtain activity compliance. 

I. INTRODUCTION 

Group-based recreational activities which involve 
participants socially engaging and supporting each other (e.g. 
book clubs, sing-a-longs, team sports, games) have shown to 
have physical, social, emotional, and cognitive health 
benefits for everyone [1]. In particular, a number of studies 
have shown that engaging in such activities has a positive 
relationship with mental health for adolescents to promote 
self-efficacy, competence and self-worth [2], as well as adults 
and the elderly to reduce the risk of the onset of dementia  
[3],[4]. Furthermore, such activities also improve the social 
networks of children and reduce the risk of isolation and 
rejection [5]. Therapeutic recreation programs aim to 
promote the positive benefits of social recreational activities 
to improve quality of life for individuals [6]. Namely, 
therapeutic recreation professionals support individuals in 
attaining their social recreational needs by providing such 
programs in the community including in healthcare facilities, 
schools, community centers and prisons [6].  
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Social robots are currently being developed to assist in 
providing group-based therapeutic recreation interventions 
for a number of the aforementioned user demographics. For 
example, in [7], the small humanoid Nao robot was used to 
facilitate an educational game with pre-school children to 
improve their geometric and metacognitive thinking. Namely, 
the robot autonomously facilitated interactions with the 
children to teach them about the four seasons by relating 
them to 2D symbols and 3D objects. After interaction with 
the robot, these children also taught new participants how to 
interact with the robot. In [8], the child-like KASPAR robot 
was used to mediate turn-taking imitation games with 
children and adolescents with autism spectrum disorder to 
improve basic social interaction skills. Namely, participants 
took turns being either the game instructor by teleoperating 
the robot’s movements or the imitator by mimicking the 
robot’s movements.  

Our own previous work in [9], consisting of using the 
social robot, Tangy, to facilitate Bingo games with groups of 
adults. Namely, the robot autonomously facilitated Bingo by 
calling out numbers and providing assistance with marking 
Bingo marks. In [10], the seal-like robot Paro was used for 
group pet therapy for older adults with dementia to promote 
group social interaction. Namely, a therapist engaged 
residents in the intervention with Paro by passing the robot 
around, encouraging users to interact with it, demonstrating 
Paro’s capabilities, and encouraging discussions on the robot. 
In [11], the cartoon-like robot Ifbot facilitated social group 
recreational activities for older adults. The activities 
consisted of math and language quizzes, riddles, sing-alongs, 
and tongue twisters. The robot autonomously facilitated the 
activities, however, a human expert familiar with the robot 
mediated the interactions between Ifbot and participants by 
repeating what the robot had said and telling Ifbot the group’s 
agreed upon answers.  

The results of user studies with the aforementioned robots 
have shown the potential benefits of using robots for 
recreational activities. However, current social robots are 
limited to a set of a priori known activities that have been 
pre-programmed and integrated by human experts. Once 
deployed in their intended facility, these robots should be 
capable of learning new activities from non-expert humans in 
order to adapt to the needs of that facility. Namely, staff (e.g. 
therapeutic recreation professionals) should be able to teach a 
robot new activities that are needed to effectively administer 
their therapeutic recreation programs, as well as personalize 
existing activities for intended users. This can improve user 
compliance and impact the health efficacy of these users with 
respect to such programs [12]. 

The objective of our research is to develop social robots 
capable of learning to autonomously facilitate group-based 
social recreational activities from non-expert users (such as 
staff). To achieve this goal, we have developed a novel 
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learning from demonstration robot architecture. The 
architecture is capable of: 1) learning activity structures from 
non-expert teachers and monitoring the execution of the new 
activity, and 2) personalizing robot assistive behaviors during 
the activity to promote compliance. Our overall goal is to 
design robotic technology that is adaptable and easy to use in 
the settings that social robots are deployed in order to 
promote long-term use. 

II. ACTIVITY LEARNING  

In this section we discuss how learning from 
demonstration (LfD) has been used to learn task/activity 
structures as well as how learning for personalization has be 
used during robot facilitated recreational activities. 

A. Learning from Demonstration (LfD) 

Robots can effectively learn new activity structures (i.e. 
high-level task representations) using LfD. In particular, two 
common LfD approaches that have been used include [13]: 1) 
a human teacher teleoperating a robot to perform specific 
behaviors to accomplish a task [14]-[17], or 2) a robot using 
external observations of the teacher performing a task and 
then mapping these behaviors onto its own platform 
[18],[19].  

In [14], the PR2 robot learned from teleoperation-based 
kinesthetic demonstrations to flip over a box by using two 
chopsticks placed in its two grippers. The teacher 
manipulated the robot’s grippers to define the motion 
trajectory, which was used to learn the initial dynamic motion 
primitive policy for the task. The learned policy was then 
optimized during task execution using a Policy Improvement 
with Path Integrals reinforcement learning algorithm and a 
task specific cost function. During the demonstrations, sensor 
information was used to predict task failures. In cases where 
task execution was predicted to fail, additional corrective 
demonstrations were provided to the robot for further 
learning. In [15], the Simon robot learned from teleoperation-
based kinesthetic demonstrations to pour coffee beans from a 
cup into a bowl and to close the lid of the box. Speech 
commands (e.g. “start here” and “go here”) were used to 
specify Keyframes that highlighted the important parts of a 
task and also demonstrated the motion to move between these 
Keyframes. Action and goal Hidden Markov Models were 
then learned, from motion and object data, respectively, using 
a Baum-Welch algorithm. Tasks were then executed using 
the learned action model, and task failures were identified 
using the goal model to determine the probability of an 
observed state sequence.  

In [18], an anthropomorphic robotic hand learned to grasp 
various objects from external observations of a teacher. 
Namely, a teacher demonstrated the initial hand pose to grasp 
an object while a neural network based method was used to 
identify teacher hand joint positions from stereo images and 
map the joint positions onto the robot hand. Potential 
grasping sequences were then generated by starting at the 
initial hand pose and closing the fingers until they were 
blocked by the object of interest. The grasping sequences 
were then evaluated based on a quality function, which 
determined whether the generated grasping gesture was 
executed. In [19], a mobile Pioneer 2-DX robot used external 
observations of a teacher in order to learn to perform tasks 
such as visiting objects in a specific order, moving objects 

from a source to destination location, and slaloming around 
objects. Namely, the robot tracked task related objects using 
a laser range finder and a 2D camera, to obtain a temporally 
ordered demonstration trajectory. Demonstration trajectories 
were then used in a longest common subsequence algorithm 
to learn high-level task structure. The robot also conducted 
practice trials in front of the teacher to obtain verbal feedback 
or add missed steps in the learned task sequence.  

The aforementioned LfD approaches focus on providing 
robots with the ability to autonomously perform physical 
tasks. A handful of the aforementioned approaches 
([15],[19]) also use social behaviors from the teachers to 
improve and facilitate demonstrations between the robot and 
a teacher (e.g. requesting for more demonstrations when the 
robot makes a mistake or it is not confident in performing 
the task). However, they have primarily focused on learning 
physical activities. Furthermore, they have not focused on 
learning social tasks that involve direct social interactions 
between intended users and a robot [20]. Our problem 
differs in that we aim to have a robot learn a social activity 
which involves social interactions with a group of non-
expert users.  

B. Learning for Personalization 

Studies have shown that social robots that personalize 
their interactions with users can improve the overall 
effectiveness of a facilitated recreational activity [21]-[24]. 
For example, in [21], the child-like robot, Bandit, changed 
the difficulty level of a music guessing game to improve 
user performance and to maintain user interest in the game. 
Namely, the robot used a supervised learning method based 
on a user’s response speed and game success rate to 
personalize the robot’s behaviors (e.g. prompt user to answer 
versus providing the correct answer to user) to change game 
difficulty. In [22], the human-like robot, Brian 2.1, adapted 
its assistive behaviors to reduce user stress levels during a 
memory card game. Namely, the robot used a hierarchical 
reinforcement learning based method to learn appropriate 
assistive behaviors (providing varying levels of help or 
instruction) for a user to reduce stress levels.  

The aforementioned HRI personalization techniques 
focused on adapting robot behaviors to improve user moods 
or performance. These learned personalized behaviors, 
however, were specific to the activity at hand, and were not 
generalized. Alternatively, in this work, we present a generic 
learning for personalization methodology that uniquely 
utilizes persuasive strategies [25] to gain user compliance 
during a facilitated activity. These persuasive strategies can 
be generalized to be used for different activities and 
personalized for each user in order to obtain compliance 
[26]. Obtaining user compliance is important during 
therapeutic recreational activities in order to promote 
cognitive and social health [12]. 

III. DEMONSTRATION LEARNING SYSTEM ARCHITECTURE 

Our proposed demonstration learning system architecture 
is presented in Fig. 1. The objective of this system is to have 
a social robot learn the task representation of a social group 
recreational activity and autonomously facilitate the activity 
with a group of users. The architecture is comprised of three 
sub-systems: 1) learning, 2) interaction, and 3) execution 
monitoring. Namely, the learning sub-system acquires 



  

activity demonstrations from non-expert teachers and learns 
the activity structure from these demonstrations. The 
interaction sub-system then uses the learned activity 
structure to have a social robot physically implement the 
activity with a group of users, as well as personalize these 
interactions. During the physical implementation of an 
activity, the execution monitoring sub-system detects and 
diagnoses faults as well as notifies the interaction sub-
system to undertake recovery behaviors. These sub-systems 
are discussed in detail below. 

A. Demonstration Learning Sub-system 

Herein a teleoperation-based LfD approach is used by a 
non-expert teacher to demonstrate the group activity to the 
robot. Since we are focusing on activity-level learning, the 
robot has a set of known primitive behaviors and the goal for 
the teacher is to teach the robot a new activity that is not 
known a priori using these behaviors. For robot learning, an 
activity simulator is used by the teacher to represent the 
overall activity scenario including both the robot and the 
group of users. We have chosen to use a simulated 
environment to obtain demonstrations from non-experts as 
simulated environments have been shown to improve the 
efficiency of learning and reduce teacher fatigue [27].  

 

Figure 1.  Demonstration Learning System Architecture 

1) Speech Identification 
A teacher uses speech commands spoken into a 

microphone to control the robot’s behaviors in the activity 
simulator module to demonstrate the facilitation of an 
activity. Speech decoding takes place by utilizing the Sphinx 
speech recognition system [28]. A Hidden Markov acoustic 
model is used to label phonemes in the teacher’s utterances 
and match labelled phonemes to words. An n-gram language 
model is then used to determine the sequence of spoken 
words. The identified sequence of words are then matched to 
a set of keywords  associated with known robot behaviors.  

2) GUI 
The GUI is the primary interface for the human teacher 

and presents the world state provided by the activity 
simulator. Namely, both the users and the robot are depicted 
as virtual agents and their behaviors are updated in real-time 
according to the teacher’s commanded behaviors for the 
robot. Once the teacher provides a verbal command, he/she 
is then prompted through the GUI to verify if the identified 
robot behavior is to be executed by the robot (i.e., behavior 
verification). Namely, a pop-up message appears on the GUI 
stating, “Did you say [robot behavior]? Type ‘Y’ to execute 
or ‘N’ to provide a new command.” The teacher provides 
this input through a keyboard.    

3) Activity Simulator 
The activity simulator module consists of models for the 

robot, group of users, and the activity.  

i) Robot Model   
The robot, R, is modeled as a simulated agent with a set 

of known behaviors, B={b1, b2, … bm},where m is the total 
number of behaviors. Each behavior has a set of 

actions, },,...,{ 21 acacacb
i
q

iii   where q is the total number of 

actions for behavior i. For example, the action ac
i
  is action 

υ in the set of behavior i and is defined to be a function of 
robot actuator positions (θ), robot speech (sp), visual content 
displayed on the robot’s screen (im), and desired robot 

location (
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ii) User Model 
The users participating in the group activity are modeled 

as the set U={u1, u2,… un}, where n is the total number of 
users participating in an activity at one time. Each individual 

user r is modeled as a set, ).,,,{
, yxuhua

r lssIDu   Namely, ID 

is the name of the user; sua is the user’s particular activity 
state; sh is the user’s assistance request state (namely, if the 
user is requesting help with the activity from the robot); and 

yxul ,
 is the user’s 2D location within the activity room.   

iii) Activity Model   
The activity is modeled as a set of discrete stages (e.g. 

start, facilitate, help, socialize, and end) during the 

facilitated group activity, },,...,{ 21 g
aaaa sssS  where g is the 

total number of discrete stages that occur during the entire 
activity. Each discrete stage, also referred to as the activity 

state, is defined by },,,{ ...2,1...2,1 n
h

n
ua

p

a
ssks   where p is an 

instance of the activity state and k is the discrete time step. 

iv) Demonstration Trajectory   
At the end of an activity demonstration, the sequence of 

behavior-state pairs is used to define the demonstration 
trajectory for the robot. Namely, the demonstration 
trajectory can be defined as 

},{ 11

a
sbT   },{ 22

a
sb … },,{

j

a

j sb  where j is the total 

number of state-behavior steps required for the complete 
demonstration. 

4) Activity Learning 
Within the activity learning module the state-behavior 

mapping (i.e., policy) of an activity is learned. We utilize a 
random forest classifier to learn this policy. Random forest 



  

is chosen as it can provide a confidence on its learned state-
behavior mapping and avoids overfitting to state-behavior 
pairs in the demonstration trajectory [29]. In our learning 
scenario, we utilize the demonstration trajectory T as the 
training set to learn the state-behavior mapping for an 
activity. Namely, tree-structured classifiers are generated 
from independent identically distributed state-behavior 

pairs, },,{
p

a

i sb  sampled from the demonstration trajectory. 

Robot behaviors bi are considered the classes and the activity 

states p

a
s  are the features in the training samples. The set of 

generated trees defines the policy function, ,)( ip

a
bs   which 

provides a state-behavior mapping for the demonstrated 
activity. Namely, input activity states are classified by each 
generated tree casting a vote for the appropriate behavior to 
execute. The behavior that receives the most votes is then 
mapped to the input activity state. The policy function is 
then utilized by the behavior selection module in the 
interaction sub-system to facilitate the demonstrated activity. 

A robot needs to know how its executed behavior affects 
the activity to allow the robot to monitor whether this 
behavior is achieving the intended goal. In our learning 
scenario, the robot does not know a priori the effects of its 
behaviors within the context of a demonstrated activity. 
Instead the robot assumes the intended effects of a behavior 
is the activity state that immediately follows the execution of 
a behavior during an activity demonstration. Namely, our 
behavior effects identification algorithm parses the 

demonstration trajectory into sets, },,{ 1k

a

i sb  where bi is the 

executed behavior and 1k

a
s  is the observed activity state one 

time step after executing the behavior. These sets are then 
used to define the expected effects of each robot behavior in 
a demonstrated activity. The expected robot behavior effects 
are then used in the fault detection module in the execution 
monitoring sub-system to detect for occurrences of faults 
during task execution. 

B. Interaction Sub-system 

The interaction sub-system uses the learned activity 
policy to have the robot autonomously facilitate group 
recreational activities in the real-world with the intended 
users. This is achieved by implementing the robot’s physical 
behaviors based on sensed world states. During activity 
facilitation, the robot also adapts and personalizes its 
behaviors to obtain user compliance using persuasive 
strategies that influence changes in attitudes and behaviors.  

1) Identification of World State Parameters 
Sensory information of the environment, users and robot 

are obtained to determine world state parameters. These 
parameters include each user’s, r, identity ID determined 
from user sensors; and activity state sua, user assistance 
request state sh and 2D location 

yxul ,
 within the activity 

room all determined from environmental sensors. 
Furthermore, the robot’s 2D location 

yxrl ,
is determined by 

the robot sensors. These observed parameters are then used 

to define the activity state p

a
s  in the behavior selection 

module.  

2) Behavior Deliberation 
The behavior deliberation modules determine the robot’s 

behavior bi and associated action i
vac  to execute based on 

the observed activity state p

a
s . The associated action i

vac for 

each behavior bi has been designed to also include an 
appropriate persuasive strategy. Namely, the robot has a set 
of persuasive strategies, PS = {ps1,…,psγ}, where γ is the 
total number of robot persuasive strategies. Namely, each 
action is updated to also include the persuasive strategy, psz, 

utilized during HRI: ).,,,,( ,,,
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Behavior Selection: The behavior selection module first 
determines the appropriate robot behavior bi to implement 
by utilizing the learned activity policy π. The appropriate 
associated persuasive strategy is then determined based on 
user learned persuasive strategy profiles during activity 
facilitation. We define a user’s persuasive strategy profile as 

the set, },,...,{
1 pspsM  where

zps is the probability 

of complying to a particular persuasive strategy psz. User 
persuasive strategy profiles M are learned using a Thompson 
Sampling based approach [30]. Thompson Sampling is used 
to learn the model for the user persuasive strategy profiles 
by maintaining a belief on the expected probability of a user 
r complying with each psz based on previous interactions 
with that user. Persuasive strategies are then selected by 
sampling from these beliefs for the psz that provides the 
highest probability of user r complying during an 
interaction. Beliefs are then updated according to the success 
of the executed psz. Namely, Thompson Sampling 
determines when to explore or exploit different persuasive 
strategies. In our Thompson Sampling based learning 
approach, we assume for user r each 

zps  has a Beta 

distribution:  
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   ,             (1) 

where x is the probability that user r will comply with psz, 
and α and β are initially set to one (i.e. a uniform distribution 
of x). The decision to exploit or explore strategies is then 
determined by sampling from the modeled Beta distributions 
of 

zps  for all persuasive strategies in M. Namely, the 

sampled strategy that provides the highest probability of 
compliance is selected. After execution of a selected 
strategy, the Beta distribution for the selected strategy is 
updated according to the following rule: 
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Once psz is selected, the action
i
vac associated with behavior i 

is sent to the hardware controllers of the robot to execute the 
appropriate actuator and output device commands.  

Navigation: If i
vac  involves the robot moving from one 

location to another location, the navigation module is 
notified to determine an appropriate path for the robot. The 
path is then provided to the hardware controllers to execute 
the appropriate actuator commands.  

C.   Execution Monitoring Sub-system 

The objective of the execution monitoring sub-system is 
to ensure the successful implementation of the activity by 



  

the robot. Namely, to identify if a robot’s behavior cannot be 
implemented due to the occurrence of a fault. Herein, a fault 
is defined as an event that causes the robot to transition to an 
incorrect or unknown activity state when implementing a 
behavior. The fault detection module uses information about 
the current activity state and the learned behavior effects to 
determine if a fault has occurred, while the diagnosis module 
uses information from all the sensors and world state 
identification module to determine fault recovery behaviors. 

The fault detection module identifies faults by utilizing 

the identified behavior effects, },,{ 1k

a

i sb  from the Activity 

Learning module. Namely, after each behavior is executed 

by the robot, the activity state, ,
p

a
s is compared to the 

identified effects of the robot behavior, 1k

a
s . When the 

states do not match, a fault is identified and the robot queries 
the fault diagnosis module to determine the cause of the 
fault. 

The diagnosis module uses a rule-based reasoning 
approach to analyze the cause of the fault. The criticality of 
the fault (non-critical versus critical) is also determined as a 
function of the type of fault. An example critical fault would 
be if the robot base cannot move due to hardware 
malfunction. Therefore, an expert is required to fix the 
problem. Non-critical faults can be furthered categorized as: 
1) faults that will still allow the robot to continue the 
activity, and 2) faults that result in the robot requesting for 
assistance from a user (e.g. move activity object) or teacher 
(e.g. provide a new demonstration).  

IV. LEARNING TO FACILITATE BINGO GAMES 

We have integrated our LfD system architecture with our 
socially assistive robot, Tangy, to learn to facilitate the 
group-based game of Bingo. Namely, Tangy learns from 
non-expert teachers the activity structure of Bingo games 
and facilitates the learned game with a group of users. We 
chose Bingo as it has been shown to be effective in 
improving cognitive skills such as recognition, recall, and 
visual search as well as promotes social engagement among 
players of all ages [31], [32]. 

A. Tangy Robot 

Tangy, Fig. 2, has a human-like upper torso and a 
differentially driven wheeled mobile base. Namely, Tangy’s 
upper torso consists of two six degrees-of-freedom (DOF) 
arms with two DOF grippers. Mounted on top of Tangy’s 
torso is a six DOF animated head with one DOF for opening 
and closing the mouth, one DOF for each eye that allows for 
panning left and right, one DOF for moving the eyes up and 
down together, and two DOF in the neck for nodding and 
shaking the head. A tablet is mounted on Tangy’s chest for 
displaying written messages or images related to the activity. 
The robot can also communicate verbally using a 
synthesized voice. The robot retrieves activity, user, and 
environment information using a combination of sensors 
including a laser range finder mounted on its base, 2D 
cameras mounted on its head and for its eyes, and an IR 
sensor placed in the activity room behind Tangy. 

 
 

Figure 2.  The social robot Tangy. 

B. Bingo Scenario 

The robot facilitated Bingo game scenario, Fig. 3(a), 
begins with Tangy at the front of a room facing four users 
seated behind a table. Each user is given a Bingo card that 
consists of a 5x5 grid of numbers from 1-75. During the 
game, Tangy will call out Bingo numbers and the goal is for 
the users to mark these numbers on their cards with red 
circular markers. At any point during the game, the users can 
request for assistance from the robot by pressing the button 
on their assistance request device (Fig. 3(b)), at which time 
Tangy will approach them to provide one-on-one assistance. 
A player wins the game when he/she has marked a row, 
column, or diagonal on his/her card correctly. 

 
Figure 3.  a) Bingo game scenario; b) User’s assistance request device and 

Bingo Card. 

Tangy does not know a priori the Bingo activity 
structure. The robot has a known set of prior primitive 
behaviors (we obtained from our previous work [9]). These 
behaviors include: greeting, call Bingo numbers, tell jokes, 
request to remove markers from numbers that have not been 
called, request to mark numbers that have been called, 
encouraging users to keep up the good work, request to 
move card closer to the robot, navigate to user, navigate to 
the front of room, celebrate a winning card, and valediction. 
For our scenario, Tangy uses four persuasive strategies to 
define the robot’s actions: praise, suggestion, scarcity, and 
neutral. We use these strategies as they have been shown to 
be effective in HCI requiring user compliance [25],[33]. 
Namely, offering praise and suggestions at opportune 
conditions have been shown to influence user compliant 
behaviors, and users find opportunities more valuable when 
they are less available [25]. We also include a neutral 
strategy with no social influence, as some individuals can be 
resistant to the above strategies [34]. Tangy changes its 
speech content for each strategy. Examples of Tangy’s 
speech for these persuasive strategies are presented in Table 
I.  

Bingo Card 

Assistance  
Request Device 

Unique  
Identifier 

Reflective Triangle 

a) 
b)  

ASUS  Xtion Pro  
IR Sensor 
2D Logitech Pro  
C920 Camera 

2D Axis M1031 - W  
Camera 

URG - 04 LX - 
UG 01 Laser 
Range Finder 



  

C. Bingo Simulator 

The Activity Simulator used for the Bingo scenario is 
presented in Fig. 4. As can be seen in the figure, Tangy and 
the users are simulated herein using the aforementioned 
Bingo scenario in order for a teacher to demonstrate the 
Bingo activity to the robot.  

 

Figure 4.  Activity Simulation during a demonstration of a Bingo game: a) 

robot calls a number and user requests for assistance; b) robot requesting a 

user to remove marker from uncalled number. 

D. Bingo Games with Users 

Tangy implements the Bingo game scenarios in the real-
world with human users using the learned activity policy. 
Namely, Tangy uses its sensors and world state 
identification modules to: 1) identify user activity states with 
the 2D camera mounted on its head, 2) determine the 
identity of users with the 2D camera in one of its eyes, 3) 
monitor when a user has requested for assistance with the IR 
sensor mounted in the activity room, and 4) localize itself 
within the recreational activity room with the laser range 
finder mounted on its base.  

User activity states are identified by determining the 
numbers marked on a user’s Bingo card. Namely, a Hough 
transformation [35] based methodology is used to identify 
grid squares. A speeded-up robust features (SURF) [36] 
based methodology is then used to identify the unique 
identifier on the card (which has a corresponding set of 
Bingo numbers). Red blob detection is then used to identify 
which of these numbers are marked. User identities are 
determined by recognizing eyebrow, eye, nose, mouth, and 
face contour features via the OKAOTM Vision software 
library [37]. User assistance requests are monitored using the 
IR sensor and a Hough Transformation [35] based 
methodology to identify IR reflective triangles that are 
revealed when a user presses their assistance request device, 
Fig. 3(b). The location of the user requesting for assistance 
is then determined by identifying the position of the IR 
triangle in the 3D point cloud of the environment. The robot 
localizes and navigates itself in the room using the laser 
range finder mounted on its base and optical encoders used 

with its base motors. Namely, we utilize a Gmapping 
technique to map the room [38] and an adaptive Monte 
Carlo technique [39] for the robot to localize itself within the 
mapped room. Tangy autonomously navigates the room 
using the ROS navfn planner [40]. More details about 
Tangy’s sensors and detection methods can be found in [9]. 
 

V. EXPERIMENTS 

Two types of performance tests were conducted to verify 
the performance of our proposed LfD system architecture. 
 
Scenario 1 - The performance of the learning sub-system in 
learning the structure of a Bingo game from non-expert 
demonstrations was investigated by determining the 
following: 1) the minimum number of Bingo demonstrations 
required to learn the activity policy, and 2) if different 
teachers have any effect on the learned policy. The non-
expert teachers who participated in the experiments were 
university students with no previous robot teaching 
experience. First, one non-expert teacher demonstrated the 
group activity of Bingo to Tangy. We asked the teacher to 
incrementally provide demonstrations until we identified the 
minimum number of activity demonstrations required by the 
activity learning module to learn the expected policy. Five 
different non-expert teachers then demonstrated the Bingo 
activity to Tangy using this minimum number of 
demonstrations. The learned policies from each teacher were 
then compared. 

Scenario 2 – The performance of the persuasion learning 
approach was investigated by determining the percentage of 
optimal persuasive strategy instances occurring during 
interactions with users. Herein, we define interactions as 
situations during Bingo where users need to comply with the 
robot’s requests. In this scenario, we used the activity 
simulator to investigate the ability of the persuasive learning 
approach to converge to an optimal persuasive strategy for 
four users having varying persuasive preferences. Bingo 
games were facilitated using a policy learned from one of 
the teachers in Scenario 1 within the interaction sub-system. 
The simulated robot then learned user persuasive strategy 
profiles during activity facilitation and adapted its persuasive 
strategies to maximize user compliance.  

Scenario 3 – Experiments with Tangy physically facilitating 
twenty Bingo games with four real users were then 
conducted to verify the effectiveness of the proposed 
methodology. The same policy as in Scenario 2 was used. 
Users were university students (different from the teachers). 
During the activity facilitation, we also tested the execution 
monitoring sub-system by inducing faults (e.g. occluding 
and disconnecting sensors, and blocking the robot’s path 
when navigating). 

A.   Results & Discussions 

Scenario 1 Results: It took on average 9.6 minutes to teach a 

complete Bingo game to Tangy. This is three times faster 

than the time it took to play an individual game that was 

physically implemented by Tangy with a group of players 

(i.e., a physical game takes approximately 30 minutes). An 

average of 62 executed robot behaviors were implemented 

by each teacher during the Bingo learning stage. It was 

determined that three demonstration games were needed as 

Table I.  Example Persuasive Strategies 

Persuasive 
Strategy 

Example 
(Robot Behavior) 

Neutral The next number is B-5. (Call Bingo number) 

Praise You are doing great, but have missed marking the 
following numbers: B-2, B-4 (Request to mark 

numbers that have been called) 
Suggestion You are about to win the game but have marked some 

incorrect numbers. Please remove markers from the 
following numbers. B-3, B-5 (Request to remove 

markers from numbers that have not been called) 
Scarcity Everyone is close to having a winning card. To increase 

your chances of winning, push your Bingo card closer to 
me so I can check if you have won. (Request to move 

card closer to robot) 

a) b) 



  

the minimum number of demonstrations required to learn the 

Bingo game policy. Three Bingo game demonstrations were 

required as not every help scenario was represented in every 

game in the simulator, as the game scenarios were randomly 

generated. We verified that if all scenarios were present in a 

single Bingo game demonstration, then the activity policy 

was able to be effectively learned in one demonstration. As 

expected, the exact same Bingo activity policy was obtained 

by the five teachers.  

Scenario 2 Results: On average each user had 1.13 

interactions per game. Fig. 5 presents the percentage of 

optimal strategy instances that occurred with each user 

across all interactions. On average 10.75 sub-optimal 

persuasive strategies were explored by the robot, before 

convergence to the optimal persuasive strategy for each user 

was achieved. The robot then only exploited the persuasive 

strategy with the highest probability of a user complying. 

Scenario 3 Results: The results of the real-world Bingo 

game interactions are presented in Table II. The users 

always followed the behaviors of Tangy (but not necessarily 

the persuasive strategies). Tangy was able to successfully 

select and execute its activity behaviors for the 20 Bingo 

games using the learned policy. The robot was also able to 

learn user persuasive strategy profiles during activity 

facilitation. Furthermore, the robot was able to determine the 

appropriate recovery behaviors based on the induced faults. 

For example, when the robot identified that it couldn’t help a 

user because an obstacle was placed in front of the table; it 

requested assistance from the user to remove the obstruction. 

The robot also requested assistance from an expert (one of 

the researchers) when it diagnosed that the 2D camera on its 

head was disconnected and it could not sense the Bingo card.  

  
Figure 5.  Percentage of optimal persuasive strategy instances for each user  

VI. CONCLUSION 

 In this paper, we propose a novel LfD system architecture 
for a social robot to learn new group activities from non-
experts and personalize interactions with users to obtain 
compliance. Namely, the system architecture allows non-
experts to demonstrate group activities through a simulator 
that models a social robot, a group of users, and the activity. 
From these demonstrations, the architecture can then learn a 
policy to facilitate a new group activity. During the 

TABLE II.  EXECUTED ROBOT BEHAVIORS DURING IMPLEMENTATION 

Actual 

Activity 

State 

Actual 

Assistance 

Request State 

Actual User 

Activity State 

Actual Robot Behavior Success Rate Total Instances 

of Activity State 

Start ANR Occluded Greeting 100% 20 

Socialize ANR Occluded Joke 100% 29 

Facilitate ANR Occluded Call Bingo number 100% 699 

Help AR Bingo Celebrate 100% 20 

Help AR Incorrectly 

Marked 

Request to remove markers from numbers that 

have not been called 

100% 26 

Help AR Missing Numbers Request to mark numbers that have been called 100% 23 

Help AR Correctly Marked Encourage user to keep up the good work 100% 18 

Help AR Occluded Request to move card closer to robot 100% 23 

Navigate AR Occluded Navigate to user 100% 71 

Navigate ANR Occluded Navigate to front of room 100% 36 

End AR Occluded Valediction 100% 20 

Actual Fault Criticality Actual Robot Recovery Behavior Success Rate Total Instances 

Critical Request Assistance from Expert 100% 21 

Non-Critical 

Continue Activity 100% 40 

Request Assistance from User 100% 6 

Request Assistance from Teacher 100% 20 

*ANR = Assistance not required, AR = Assistance Required 

 

a) b) c) d) 

e) g) h) i) f) 

  
Figure 5. Robot Behaviors: a) Greeting; b) Call Number; c) Joke; d) Navigate; e) Request to remove markers from numbers that have not been called; f) 

Request to move card closer to robot; g) Request to mark numbers that have been called; h) Encourage user to keep up the good work; and i) Celebrate.  



  

facilitation of an activity, the robot also learns user 
persuasive strategy profiles and determines user persuasive 
strategy preferences to obtain compliance. The proposed 
architecture was implemented and tested for our social robot 
Tangy in order to autonomously facilitate the group activity 
Bingo with multiple users. System performance experiments 
showed that the activity policy learned can successfully be 
implemented on the robot and the persuasive learning 
approach can be used to personalize interactions in order to 
obtain compliance from a user. For our future work, we will 
expand this work to include the use of LfD methods to also 
have the robot learn primitive behaviors. We will also be 
conducting pilot studies at our collaborative long-term care 
facility with staff and residents to investigate the efficacy of 
our LfD system architecture.   
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